
Journal of Mathematical Chemistry 24 (1998) 359–364 359

On lower bounds of number of perfect matchings in
fullerene graphs

Tomislav Došlić
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Couting perfect matchings in graphs is a very difficult problem. Some recently developed
decomposition techniques allowed us to estimate the lower bound of the number of perfect
matchings in certain classes of graphs. By applying these techniques, it will be shown that
every fullerene graph with p vertices contains at least p/2 + 1 perfect matchings. It is a
significant improvement over a previously published estimate, which claimed at least three
perfect matchings in every fullerene graph. As an interesting chemical consequence, it is
noted that every bisubstituted derivative of a fullerene still permits a Kekulé structure.

The recently proposed [3] and subsequently verified truncated icosahedral struc-
ture of carbon species C60 has given birth to rise of scientific interest in theoretical
research of the underlying graphs. Here it will be shown how some results, regarding
numbers of perfect matchings in such graphs, can be obtained using elements of the
structural theory of matchings, explained in [4]. All terminology and notations used
in this article will be the same as in [4] if not stated otherwise.

Definition 1. A fullerene graph is a planar, 3-regular and 3-connected graph, twelve
of whose faces are pentagons, and any remaining faces are hexagons.

These same objects are known under various names, such as trivalent carbon
cages in chemical literature and G3(5, 6) in mathematical literature.

Definition 2. A matching M in graph G is a set of edges of G such that no two edges
from M have a point in common. Point v ∈ V (G) incident with some edge from M
is covered by matching M . Matching M is perfect if it covers every point of G.

A perfect matching is in chemistry called a Kekulé structure.
The existence of a perfect matching in fullerene graph is an easy corollary of a

classical result of Petersen [5]:

Theorem 1. Every connected 3-regular graph with no more than two cut-edges has a
perfect matching.
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It is obvious that every fullerene graph satisfies the conditions of theorem 1.
Motivated by the established correlation between the stability of benzenoid sys-

tems and the number of perfect matchings in underlying graphs, an interesting question
arises: How many different perfect matchings does a given fullerene graph contain?
Let us denote this number by Φ(G).

Unlike the problem of finding a perfect matching in a given graph which is, in
algorithmical sense, an “easy” one, the problem of counting perfect matchings is very
difficult. Hence, we are interested in establishing bounds and estimates of a number
of perfect matchings in terms of various graph parameters (number of points, number
of edges, connectedness, etc.).

Starting from the fact that every fullerene graph is 3-connected and using the
methods of Cathedral construction (fully explained in [4, p. 166]), we can obtain the
following lower bound for Φ(G):

Theorem 2. Every fullerene graph contains at least three different perfect matchings.

The bound from theorem 2 has been already published [2], but the result was
established by using the Four-Color theorem. This assumption is not necessary in
obtaining this result by Cathedral construction.

The bound just established is not very sharp. This is not surprising, because only
3-connectedness of fullerene graphs was used. Much better bounds can be obtained
using other structural qualities of fullerene graphs.

Assuming the Four-Color theorem, it was noted in [2] that every edge in a ful-
lerene graph G appears in some perfect matching of G. This fact can be established
without resorting to the Four-Color theorem using the following result:

Theorem 3. If G is an r-regular, (r− 1)-edge connected graph on an even number of
points, then every edge of G is contained in a perfect matching of G.

Theorem 3 is a corollary of Plesnı́k’s result, the proof of which can be found
in [4, p. 111].

Definition 3. Graph G is 1-extendable if every edge of G appears in some perfect
matching of G.

Using theorem 3 and this definition, we can conclude that every fullerene graph,
being 3-regular and 3-edge connected, is 1-extendable.

1-extendable graphs deserve special attention because they permit ear decompo-
sition. More details about ear decomposition can be found in [4, pp. 174–195].

Definition 4. Let G be a graph and G′ subgraph of G. An ear of G relative to G′

is any odd-length path in G having both endpoints – but no interior point – in G′.
An ear decomposition of G starting with G′ is a representation of G in the form
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G = G′ + P1 + · · · + Pk, where P1 is an ear of G′ + P1 relative to G′, and Pi is an
ear of G′ + P1 + · · · + Pi relative to G′ + P1 + · · ·+ Pi−1 for 2 6 i 6 k.

An ear decomposition of a given graph is not unique.
It can be shown that every 1-extendable graph permits an ear decomposition

starting with any given edge of this graph. However, if we want that every intermediate
graph in an ear decomposition of an 1-extendable graph be itself 1-extendable, we may
have to add more than one ear at a time.

Definition 5. A subgraph G′ of any graph G is nice if G − V (G′) has a perfect
matching.

Definition 6. Let G be any graph and G′ a subgraph of G. An ear system of G
relative to G′ is a set of point-disjoint paths in G of odd length each of which is
openly disjoint from G′, but has both endpoints in G′. A sequence of subgraphs of G,
(G0,G1, . . . ,Gm) is a graded ear decomposition of G starting with G0 if G = Gm,
every Gi for i = 0, . . . ,m is a nice 1-extendable subgraph of G and for each i, Gi+1
is obtained from Gi by attaching an ear system relative to Gi. Integer m + 1 is a
length of the decomposition.

Every 1-extendable graph has a graded ear decomposition starting with any given
edge of this graph [4, p. 176]. 1-extendability of intermediate graphs G1, . . . ,Gm−1

is important because it implies that upon attaching an ear system to the graph Gi we
obtain graph Gi+1 with Φ(Gi+1) > Φ(Gi). (Every perfect matching of Gi can be
extended to the perfect matching of Gi+1 by taking every second, fourth and so on
edge on every ear attached to the Gi. But 1-extendability of Gi+1 implies that there
has to be at least one perfect matching of Gi+1 which contains odd-numbered edges on
ears attached to the Gi. Such a matching, restricted to the graph Gi, leaves endpoints
of the ears uncovered, so it cannot be a perfect matching of Gi.)

Since each ear is a path with one more point than edge, one can conclude that the
number of ears (but not the number of ear systems) in an ear decomposition of a given
1-extendable graph is always equal to q− p+ 2, where the starting edge is counted as
the first ear, and p and q are numbers of points and edges in this graph, respectively. As
each ear system adds one more perfect matching to the already constructed graph, it is
possible to obtain a lower bound for Φ(Gi) by finding the longest ear decomposition
of G. An important result, called the Two-Ear theorem [4, p. 182] states that it is
always possible to find a graded ear decomposition of a 1-extendable graph in which
each ear system, except the first two, contains at most two ears. The first two ear
systems are guaranteed to consist of single ears.

In the worst case, all ear systems except the first two will require two ears, and
all possible ears will be spent in (q − p)/2 steps. This leads to the following result:

Theorem 4. Every 1-extendable graph contains at least (q− p)/2 + 2 different perfect
matchings.
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For fullerene graphs, satisfying q = (3/2)p, this result reads as follows:

Theorem 5. Every fullerene graph on p points contains at least (p/4) + 2 different
perfect matchings.

Even better bounds can be obtained using the fact that fullerene graphs belong
to the class of bicritical graphs.

Definition 7. A graph G is bicritical if G contains an edge and G− u− v contains a
perfect matching, for every pair of distinct points u, v ∈ V (G).

For bicritical graphs, we have the following lower bound for Φ(G) [4, p. 303]:

Theorem 6. A bicritical graph G on p points contains at least p/2 + 1 perfect match-
ings.

We will show that every fullerene graph is bicritical using the following charac-
terization of bicritical graphs [4]:

Definition 8. A graph G is cyclically k-edge-connected if G cannot be separated into
two components, each containing a cycle, by deletion of fewer than k edges.

Theorem 7. If, for some k > 3, G is a non-bipartite, k-regular, cyclically (k + 1)-
edge-connected graph on an even number of points, then G is bicritical.

Let us show that every fullerene graph satisfies conditions required in this char-
acterization.

Theorem 8. Every fullerene graph is cyclically 4-edge-connected.

Proof. Suppose, to the contrary, that G is not cyclically 4-edge-connected. This
means that G can be separated into two components, each containing a cycle, by
deleting exactly three edges. (Less than three edges would not suffice because of
the 3-connectedness of G.) Let us denote these 3 edges by ei, i = 1, 2, 3, and their
endpoints by v′i, v

′′
i , i = 1, 2, 3, respectively. Let us consider the Schlegel diagram of G.

Because of 3-connectedness and 3-regularity of G, there are two cycles, C ′ and C ′′,
such that every edge ei has one endpoint, say v′i on C ′, the other endpoint, v′′i , on C ′′,
and no other edge connects C ′ with C ′′. If there were no additional points on C ′,
then C ′ would be a triangle, contrary to the fact that G is a fullerene graph. The same
is valid for C ′′. Let us denote the number of additional points on C ′ and C ′′ by k′

and k′′, respectively. Because of 3-regularity and 3-connectedness of G, k′ (and k′′)
must be at least 3. (It is possible to retain these properties even with k′ = 2, but in
this case the two additional points must be connected by an edge, forming a triangle
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in G. So the case k′ = 2 must be dismissed.) Thus, k′ + k′′ > 6. On the other hand,
k′ + k′′ 6 6, because it is not possible to place more than 6 additional points on C ′

and C ′′ placing at least 3 on each of them, without forming a face of G with more
than 6 sides. So, k′ = k′′ = 3, i.e., each one of the cycles C ′,C ′′ is a hexagon. Let C ′

be the inner one. Then each one of 3 additional points on C ′ is an endpoint of an
edge pointing toward the interior of C ′. Let us denote these edges by e′i, i = 1, 2, 3.
If any two of them have a common endpoint, v′, then the 3-connectedness and the
3-regularity of G imply that the third edge has to have v′ as its endpoint, too. In
this case, G would contain at least one triangular or quadrangular face (depending
on the placement of additional points on C ′), contrary to our assumptions about G.
Then the same reasoning as above implies that endpoints of e′i must be on a cycle,
C ′1, with exactly 3 additional points on C ′1. We can proceed further in applying the
above reasoning on C ′1. Because of the finiteness of G, after a finite number of steps,
say n, we will obtain a cycle C ′n which will be either a triangle, or a hexagon with
exactly one point inside. Both of these outcomes are in contradiction with our initial
assumptions about G. �

As fullerene graphs are 3-regular, the main result in this article follows directly
from theorems 6, 7 and 8.

Corollary. Every fullerene graph on p points contains at least p/2 + 1 perfect match-
ings.

Bicriticality of fullerene graphs has, besides purely mathematical, interesting
chemical consequences, too. It means that every bisubstituted derivative of a fullerene
still permits a Kekulé structure.

Although presented bounds do not look very impressive when compared with
actual numbers of perfect matchings in fullerene graphs (e.g., 12500 in the case of
truncated icosahedron isomer of C60 [1]), it should be noted that they were obtained
relying on remarkably simple concepts and ideas, and that they are fully independent
of the particular isomer. Also, they are the first ones which reflect relations between
the size of a fullerene graph and the number of its perfect matchings.
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